Accepted Manuscript Investigation on glass-forming ability,Flexural strength and microwave dielectric properties of Al₂O₃-doped LMZBS glasses Tianying Qin, Chaowei Zhong, Hongcheng Yang, Yang Qin, Shuren Zhang PII: S0272-8842(19)30469-9 DOI: https://doi.org/10.1016/j.ceramint.2019.02.168 Reference: CERI 20891 To appear in: Ceramics International Received Date: 11 December 2018 Revised Date: 18 February 2019 Accepted Date: 24 February 2019 Please cite this article as: T. Qin, C. Zhong, H. Yang, Y. Qin, S. Zhang, Investigation on glass-forming ability,Flexural strength and microwave dielectric properties of Al₂O₃-doped LMZBS glasses, *Ceramics International* (2019), doi: https://doi.org/10.1016/j.ceramint.2019.02.168. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. # Investigation on Glass-forming ability. Flexural strength and Microwave dielectric properties of Al_2O_3 -doped LMZBS glasses Tianying Qin^{1, 2}, Chaowei Zhong^{1, 2}, Hongcheng Yang^{1, 2}, Yang Qin^{1, 2}, and Shuren Zhang, ^{1, 2} - 1. School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China. - 2. Key Laboratory of Multi-Spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China. ABSTRACT: In this work, a new high flexural strength microwave dielectric (1-x) Li₂O-MgO-ZnO-B₂O₃-SiO₂-xAl₂O₃ material LTCC applications, (x=1~10wt. %) (LMZBSA) glass-ceramics, was prepared by conventional solid-state reaction method. The effects of Al₂O₃-doped Li₂O-MgO-ZnO-B₂O₃-SiO₂ (LMZBS) glass on its glass-forming ability (GFA) and activation energy were investigated by Dietzel, Saad-Paulin methods and Kissinger model, respectively. Comparing the undoped sample with the 10wt. % of Al₂O₃-doped LMZBS glass the parameters of ΔT and S which characterize the GFA increase by 35% and twice, respectively. Meanwhile, the addition of Al₂O₃ will reduce the activation energy, making initial crystallization easier. And then the impact of Al₂O₃ on the phase composition, flexural strength and microwave dielectric properties of LMZBSA glass-ceramics was studied systematically. It shows that the content of Al₂O₃ has a great influence on the flexural strength of LMZBSA glass-ceramics, and different composition is responsible for its microwave dielectric properties. LMZBSA glass-ceramics with 5wt. % Al₂O₃ sintered 2h at 900°C showed the highest relative density (96.41%) and flexural strength (σ =190MPa), optimum microwave dielectric properties (ε_r =6.8, $Q \times f$ =12500GHz, τ_{f} =-45ppm/°C). **KEYWORDS:** Glass-forming ability, LMZBSA glass-ceramic, Flexural strength, Microwave dielectric properties. #### 1. INTRODUCTION To meet the requirement of integration, modularization and miniaturization of electronic components, low temperature co-fired ceramic (LTCC) materials are widely used in passive devices (capacitors, inductors, etc.) working at microwave frequencies. For LTCC application, materials with desired dielectric properties should be sintered at a low temperature (below 950°C), and can be co-fired with Ag, Cu or other high conductivity metals [1-4]. Glass is often used as sintering aids to reduce the sintering temperature of the ceramic-based materials by liquid-phase sintering. Among the various glasses, Li₂O-MgO-ZnO-B₂O₃-SiO₂ (LMZBS) glass has been proven to be an appropriate addition for lowering the sintering temperature of MgAl₂O₄, Li (Zn_{0.95}Co_{0.05})_{1.5}SiO₄, SrCuSi₄O₁₀, Li₂MgSiO₄, Mg₃B₂O₆, Li₃Mg_{1.8}Ca_{0.2}NbO₆ ceramics [5-10]. And Xie et al. had systematically reported the microstructure of LMZBS glass-ceramics could be improved by changing the amount of MgO, and the sample with a flexural strength of 160 MPa can be obtained when sintered at 920 °C[11]. It has been proposed that the addition of Al₂O₃ to the MgO-B₂O₃-SiO₂ glass system can improve their GFA and sintering densification[12]. The purpose of this paper is investigating the effect of different amounts of Al₂O₃ on the sintered crystallization behavior and microwave dielectric properties of the LMZBSA glass-ceramics. In order to emphasize the influence of Al₂O₃ on crystallization tendency of LMZBS glass, their GFA were also discussed. ## 2. Experimental procedures The LMZBS glass doped with Al_2O_3 were synthesized from highly purified powders provided by CHRON CHEMISTRY: Li_2CO_3 , MgO, ZnO, H_3BO_3 , SiO₂, and Al_2O_3 . The glass compositions were weighed based on stoichiometric ratio of (100-x) ($Li_2O-MgO-ZnO-B_2O_3-SiO_2$) $+xAl_2O_3$, ($x=0\sim10$ wt. %.), which was melted at $1350^{\circ}C$ in a platinum crucible, quenched and powdered. DSC curve (heating rate is 10°C/min) was obtained from Thermomechanical Analysis (TMA) (Model DIL 420C, Netzsch, Germany) to explore the GFA of LMZBS glass. Meanwhile, the activation energy (E_a) was investigated, a few heating rates were adopted during the DSC equipment (5.0, 7.5, 10.0, and 15.0 K/min). The fine powder sample was mixed with acrylic emulsion and granulated, and then molded at a pressure of 20 MPa to get a green cylinder (Φ =15mm×7.5mm) and a strip (Φ =50mm×4mm×4mm) to measure the dielectric properties and strength. The final dense glass-ceramics sample was synthesized in air atmosphere at 900°C for 2h and naturally cooled. A range of tests for LMZBSA glass-ceramics were listed as follows: the relative density was obtained by calculated. The crystal phase information was verified by X-ray diffraction (XRD, PANalytical PW3040/60, Netherlands) with scanning angles 2θ of 10° to 120° using Cu K $_{\alpha}$ radiation. Crystallographic information obtained through refining XRD data using the GSAS-EXPGUI program. The morphology of the as-fired surface was observed with a scanning electron microscope (SEM, FEI Inspect F, and the UK). Microwave dielectric properties were measured in the TE011 mode by a Hakki-Coleman dielectric resonator method using a network analyzer (HP83752A, USA). The flexural strength was determined by three-point bending method with an electromechanical Universal testing machine (MTS CMT6104, China). The τ_f value was estimated from the following formula (1): $$\tau_f = \frac{f_{85} - f_{25}}{f_{25} \times 60} \times 10^6 (ppm \cdot ^{\circ}\text{C}^{-1})$$ (1) Where f_{25} and f_{85} are the resonant frequencies measured at 25 and 85 °C, respectively. ## 3. RESULTS AND DISCUSSION ## 3.1 Exploration of glass forming ability The DSC curve of the LMZBS glass with 10wt. % Al_2O_3 was obtained at the heating rate of 10K/min, as shown in Fig.1. The characteristic temperatures T_g =778°C (glass transition temperature), T_x =907°C (onset crystallization temperature), and T_p =966°C (crystallization peak temperature) for this glass specimen were observed. Table1 lists the relevant temperatures for different compositions. T_x and T_p increased approximately 3 and 4%, respectively, after adding Al_2O_3 . The GFA of the selected compositions can be quantitatively determined by Dietzel and Saad-Paulin methods, such as equation (2) and (3) [13, 14]: Dietzel: $$\Delta T = T_p - T_g$$ (2) Saad-Paulin: $$S=(T_p-T_x)(T_x-T_g)/T_g$$ (3) Where the ΔT and S are parameter to characterize the GFA, and the glass with larger ΔT and S values will show a greater tendency for GFA. The values are also summarized in Table 1. For the 10wt. % of Al₂O₃-doped LMZBS glass ΔT increase by 35% and S increase twice comparing with the undoped sample. The activation energy (E_a) of sintering crystallization of these glasses was investigated by analyzing DSC curves of different sintering rates of 5, 7.5, 10, 15K/min. Fig.2 (a) shows the crystallization peak displacements at different heating rates for the LMZBS with 5wt. % of Al₂O₃. As shown in Fig.2 (a), the glass crystallization behaviors are switch to a higher temperature with the sintering rate increase. This phenomenon indicates that the crystallization processes are thermally activated[13]. The Kissinger model is the most commonly employed kinetic model for any thermally activated solid state reaction, which can be used to depict the crystallization behaviors. The activation energy (E_a) can be evaluated using the Kissingger model[15]: $$In(\frac{T_p^2}{\phi}) = \frac{E_a}{RT_p} + C \tag{4}$$ Where C is constant, R is the gas constant. Following to equation (4), a linear fitting of the plot of $In(T_p^2/\phi)$ vs $1000/T_p$ can be adopted to calculate the E_a, and the diagrams are shown in Fig.2 (b) for all samples. The activation energy values were calculated and listed in Table 1.The specimens with 5wt. % of Al_2O_3 showed lower activation energy than the samples of other components, which indicated that addition of Al_2O_3 modifies the matrix and the primary crystallization becomes simple. ## 3.2 XRD analysis and Rietveld refinement of LMZBS+Al₂O₃ glass-ceramics For the sake of investigating the sintering crystallization behavior of (100-x) $(\text{Li}_2\text{O-MgO-ZnO-B}_2\text{O}_3\text{-SiO}_2) + x\text{Al}_2\text{O}_3$, (x=1~10wt. %.) (LMZBSA) glass-ceramics, the glass-ceramics were prepared and sintered at different temperatures $880 \square \sim 940 \square$ for 2h. The XRD patterns of LMZBSA glass-ceramics with different Al₂O₃ contents sintered at $900 \square$ for 2h are illustrated in Fig.3 (a), and different sintering temperature with 5wt. % Al₂O₃ are shown in Fig.3 (b). As shown, the diffraction peaks are assigned to Mg₂B₂O₅ (PDF#86-0531), Li₂ZnSiO₄ (PDF#15-0056), ZnAl₂O₄ (PDF#74-1136) and LiAlSiO₄ (PDF#26-0839), respectively. The crystalline phase Mg₂B₂O₅ (PDF#86-0531) is always the main phase in Fig.3 (a). The peak intensities of LiAlSiO₄ and ZnAl₂O₄ are gradually enhance with the increase of the sintering temperature or the content of Al₂O₃. However, the content of crystal phase Li₂ZnSiO₄ decreases with the increase of Al₂O₃ content in LMZBSA glass-ceramics. Obviously, the phases of Li₂ZnSiO₄ and Al₂O₃ reacted during the sintering process to generate LiAlSiO₄ and ZnAl₂O₄. Therefore, the chemical reaction between Li₂ZnSiO₄ and Al₂O₃ could be described as: $$Li_2ZnSiO_4 + Al_2O_3 \rightarrow LiAlSiO_4 + ZnAl_2O_4$$ (5) To further illustrate the impact of the Al_2O_3 content on the LMZBSA glass-ceramics, the information of crystal structure and composition content can be obtained by refining the XRD data with EXPGUI-GSAS program. Rietveld plot for LMZBSA glass-ceramics sintered at 900°C is shown in Fig.4 (a) to (e). The result of refined and calculated are listed in Table 2. The compactness of the composite system was evaluated by measuring the relative density of the sintered LMZBSA glass-ceramics. The relative density of glass ceramics can be obtained by equation (6) [16-18]: $$\rho_{relative} = \frac{\rho_{bulk}}{\rho_{theo}} \tag{6}$$ Where ρ_{bulk} is the bulk density measured by the Archimedes principle, the theoretical density was calculated from the following equation (7) and (8)[16, 17]: $$\rho_{\rm l} = \frac{A \times Z}{V \times N} \tag{7}$$ $$\rho_{theo} = (W_1 + W_2 + W_3 + W_4)(\frac{W_1}{\rho_1} + \frac{W_2}{\rho_2} + \frac{W_3}{\rho_3} + \frac{W_4}{\rho_4})^{-1}$$ (8) Where 1, 2, 3, 4, *W*, *A*, *Z*, *V*, *N* represents Mg₂B₂O₅(PDF 86-0531), Li₂ZnSiO₄ (PDF 15-0056), ZnAl₂O₄(PDF 74-1136), LiAlSiO₄(PDF 26-0839), weight fraction, number of atoms in the unit cell, atomic weight, volume of unit cell and Avogadro number, respectively. The calculated values of the theoretical density are shown in Table 2. When the specimens sintered at 900°C with different amounts of Al₂O₃ and 880 – 900°C with 5wt. % Al₂O₃, the mass fractions of Mg₂B₂O₅ (PDF 86-0531) and Li₂ZnSiO₄ (PDF 15-0056) phases decreased while those of ZnAl₂O₄ (PDF 74-1136) and LiAlSiO₄ (PDF 26-0839) phases increased, which is comply with the XRD results shown in Fig.3 (a) and (b). Indeed, the mentioned results verified that the proportions of raw materials and sintering temperature had a great influence on the composition of LMZBSA glass-ceramics sample. Fig.5 (a) to (e) displays the surface morphology of LMZBSA glass-ceramics with 1-10wt. % Al₂O₃ sintering at 920°C for 2h. Fig.5 (f) to (h) shows the surface morphology LMZBSA glass-ceramics sintered at 880-940°C with 5wt. % Al₂O₃. Fig.5 (c) presented three kinds of grains, including stick-like grain A, matrix grain B, small granule grain C. With increasing Al₂O₃ addition [Fig.5 (a) to (e)], the stick-like grain A and matrix grain B decreased slightly, the small granule C increase obviously. In addition, as shown in Fig 5(c) and (f) to (h), When the content of Al₂O₃ is constant, the stick-like grain A grows significantly with the increase of sintering temperature. At 920 °C, obvious pore morphology was detected for LMZBSA with 5wt. % Al₂O₃. LMZBSA glass-ceramics containing 5wt. % of Al₂O₃ appeared liquid phase when sintered at 950°C, which caused by overheating. The bulk density of the LMZBSA glass-ceramics is shown in Fig.6 (a), the flexural strength and relative density of LMZBSA glass-ceramics with 1-10wt. % Al₂O₃ sintering at 900°C are shown in Fig.6 (b). Form Fig.6 (a), the LMZBSA glass-ceramics reaches to a maximum density of 3.213g/cm³ at 900°C for 10wt. % Al₂O₃. And with the variation of in Al₂O₃ content, the bulk density continues to increase, in which is attributed to the appearance of higher density of ZnAl₂O₄ (ρ=4.6322 g/cm³). Glass-ceramics sintered at 920°C always have the lowest bulk density, which is consistent with the phenomenon observed in Fig. 5, because of the largest porosity. The relative density of glass-ceramics sinter at $900 \square$ with 1-10wt. % Al2O3 increases at first, and then declines. The glass-ceramics gets a maximum relative density of 96.41% at $900 \square$ for 5wt. % Al₂O₃, which means the glass-ceramics can be sintered to the most compact at $900 \square$ with 5wt. % Al₂O₃. The variation of LMZBAS's flexural strength with 1~10wt. % Al₂O₃ are shown Fig.6 (b). At first, the flexural strength increased from 140MPa at x=1wt. % to 190MPa (This flexural strength is 20% higher than the sample made by Xie et al. [11], and the sintering temperature is lower.) at x=5wt. %, afterward, it went down to 160MPa at x = 10wt. %. The flexural strength of the LMZBSA glass-ceramics was related to its internal structure and the relative density. With the content of Al₂O₃ increases, the smaller and finer granular crystal phases gradually increase. The stick-like grain can be regarded as the main frame, meanwhile, the increasing number of small particles are filled in the gap of the support frame. Hence, the denseness of the glass ceramic is increased, and the flexural strength also increases. Obviously, when LMZBSA glass-ceramics sintered at 900 □ with 5wt. % Al₂O₃, the densification of the microstructure is optimal, which is consist with the maximized flexural strength. When the glass-ceramics sintered at 900 □ with more than 5wt. % Al₂O₃, the decline of flexural strength is ascribed to the decrease of relative density. Then, when the temperature continues to rise, the stick-like grains gradually grow abnormally and disappear and the flexural strength decreases. The flexural strength results are listed in Table 3. The chemical components of A, B and C in the marked area shown Fig.5 (c) was identify by EDS (The EDS device cannot detect Li and B). The results of EDS testing for the marked areas are shown Fig.7. The results reveals that all regions contained O (fuchsia), Mg (red), Si (yellow), Al (wathet) and Zn (green). Zone A is mainly rich in Mg and O, Mg: O is 3.7:10, and the ratio is close to 1:2.5. The B area are mainly composed of O, Si and Zn. The region C are mainly O, Al, Zn. Combining the XRD patterns (Fig.4) analysis, we can speculate that the A region of the stick-like grains is Mg₂B₂O₅ (PDF#86-0531). B area of the matrix grain is Li₂ZnSiO₄ (PDF#15-0056), Area C of the small granule grain is a concentrated area of LiAlSiO₄ (PDF#26-0839) and $ZnAl_2O_4$ (PDF#74-1136). Because $Mg_2B_2O_5$ (PDF#86-0531) phase is the most abundant in the sample, it can also be observed from Fig.5 (c). $Mg_2B_2O_5$ (PDF#86-0531) phase is always unavoidable when selecting EDS measurement area, so the measurement results in A, B and C region always show a large amount of Mg. #### 3.3 Dielectric properties of LMZBAS glass-ceramics The measured ε_r values and calculated ε_r values of the samples sintered at 900 are shown in Fig.8. As known, the ε_r value is affected by relative density, crystal structure, and composition phase[19]. In our work, the relative density results suggested a compact samples were obtained, and there are apparently different in compositions. Hence, the variation of ε_r is ascribed to the various component and the content of each phase. The effect of multiphase glass-ceramic on the dielectric constant can be expressed by mixing rule [20, 21]: $$\varepsilon = V_1 \varepsilon_1 + V_2 \varepsilon_2 + V_3 \varepsilon_3 + V_4 \varepsilon_4$$ (Parallel mixing model) (9) $$\ln \varepsilon = V_1 \ln \varepsilon_1 + V_2 \ln \varepsilon_2 + V_3 \ln \varepsilon_3 + V_4 \ln \varepsilon_4 \qquad \text{(Logarithmic mixing model)}$$ (10) Where V_1 , V_2 , V_3 , V_4 represents the volume fraction of $Mg_2B_2O_5$, Li_2ZnSiO_4 , $LiAlSiO_4$ and $ZnAl_2O_4$; ε_1 , ε_2 , ε_3 , ε_4 represents the dielectric constant of $Mg_2B_2O_5$, Li_2ZnSiO_4 , $ZnAl_2O_4$ and $LiAlSiO_4$, respectively. Since Mg₂B₂O₅ (ε_r =7.2, $Q\times f$ =18400GHz, τ_f =-46ppm/ \square)[22], Li₂ZnSiO₄ (ε_r =5.8, $Q\times f$ =14700GHz, τ_f =-47.2ppm/ \square)[23], ZnAl₂O₅(ε_r =8.5, $Q\times f$ =56300GHz, τ_f =-79ppm/ \square)[24] and LiAlSiO₄ (ε_r =4.8, $Q\times f$ =36000GHz, τ_f =8ppm/ \square)[25], has a similar dielectric constant in the microwave frequency range, the intrinsic property of the crystal phase does not cause a significant change in ε_r with an increase in the Al₂O₃ content. The ε_r was changed slightly from 6.6 to 6.9 as shown in Fig.9. It can be seen from the experimental test data that the dielectric constant decreases first and then augment slowly. The decrease in dielectric constant of the LMZBSA glass-ceramics is contributed to the formation of LiAlSiO₄ (ε_r =4.8) at the beginning of the addition of Al₂O₃. When the content of Al₂O₃ is continuously increased, ZnAl₂O₄ phase (ε_r =8.5) is formed in large quantities, the dielectric constant of the LMZBAS glass-ceramics are increase. It can be concluded that when the Al₂O₃ content is low, the amount of LiAlSiO₄ is large, while with more Al₂O₃ content, the amount of ZnAl₂O₄ is increasing. This is consistent with the results of the mass percentage of each phase obtained after finishing in Table 2. Fig.9 shows that the Logarithmic mixing model exhibits the best predictability. Fig.9 shows the measured $Q \times f$ value and the calculated $Q \times f$ value. The $Q \times f$ value is determined by the internal and external losses[26]. The intrinsic loss is derived from the lattice anharmonic, while extrinsic loss includes the second phase, defect and so on. Since there are four phases in this sample, it is hard to acquire the lattice parameters through the combination of the overall modes. Therefore, we mainly discuss the impact of external loss. Such as relative density and the content of each phase in the LMZBAS glass-ceramics. Combining the previous discussion, with Fig.8, when the Al₂O₃ content is 1-5wt. %, the relative density of the LMZBAS glass ceramic is gradually increased, and the $Q \times f$ value increased as well. In addition, $Q \times f$ is consistent with the famous empirical model for multiphase glass-ceramics, as described follows[21, 22]: $$(Q \times f)^{-1} = V_1 (Q \times f)_1^{-1} + V_2 (Q \times f)_2^{-1} + V_3 (Q \times f)_3^{-1} + V_4 (Q \times f)_4^{-1}$$ (11) Where $V_1.V_2, V_3, V_4$ represents the volume fraction of Mg₂B₂O₅, Li₂ZnSiO₄, ZnAl₂O₄ and LiAlSiO₄; $(Q \times f)_1$, $(Q \times f)_2$, $(Q \times f)_3$, $(Q \times f)_4$ represents $Q \times f$ value of Mg₂B₂O₅, Li₂ZnSiO₄, ZnAl₂O₄ and LiAlSiO₄,respectively. With the increase of Al2O3 content in LMZBAS glass-ceramics, the calculate $Q \times f$ value keep going up, which is due to the variation content of ZnAl₂O₄ phase with a high $Q \times f$ value. However, the actual measured $Q \times f$ value is increased first (Al₂O₃ content is 1-5wt. %) and then decreased (Al₂O₃ content is 5-10wt. %). Because there are many phases in the sample, and the ZnAl₂O₄ and LiAlSiO₄ crystal phase are small particles, excessive ZnAl₂O₄ and LiAlSiO₄ crystal phase will lead to an increase in the number of grain boundaries, which will have a negative influence on the $Q \times f$ value. Moreover, when the content of Al₂O₃ is high, the decrease in relative density is also the cause of the decrease in $Q \times f$ value. The glass-ceramics gets a maximum $Q \times f$ value (12500GHz, at 12.8GHz) at 900°C for 5wt. % Al₂O₃. The variation of measured τ_f values and calculated τ_f values are showed in Fig.9. From previous reports, the calculated τ_f value can be obtained from the following [20-22]: $$\tau_f = V_1 \tau_{f1} + V_2 \tau_{f2} + V_3 \tau_{f3} + V_4 \tau_{f4} \tag{12}$$ Where $V_I.V_2$, V_3 , V_4 represents the volume fraction of Mg₂B₂O₅, Li₂ZnSiO₄, LiAlSiO₄ and ZnAl₂O₄; τ_{fI} , τ_{f2} , τ_{f3} , τ_{f4} represents value of Mg₂B₂O₅, Li₂ZnSiO₄, LiAlSiO₄ and ZnAl₂O₄, respectively. The calculated value starts to increase, which is attributed to the positive value of LiAlSiO₄ (8ppm/ \square). Later, the calculated value growth was slowly because the ZnAl₂O₅ (-79ppm/ \square) phase had a negative impact. The actual τ_f values are between -53ppm/ \square and -43ppm/ \square , and the calculated τ_f values are between -46ppm/ \square and -44ppm/ \square . Combining with the measured and calculated τ_f values, it can be found that the effect of Al₂O₃ on τ_f value is not obvious. The dielectric properties of glass ceramic samples of other components are listed in Table3. ## 4. CONCLUSION In the present work, LMZBSA glass-ceramics were prepared by conventional solid-phase sintering. According to Dietzel, Saad-Paulin methods and Kissinger model, the presence of Al₂O₃ in the glass composition significantly improves the GFA and reduced activation energy, which is beneficial for the initial crystallization of LMZBSA glass-ceramics. LMZBSA glass-ceramics containing 5wt. % Al₂O₃ sintered at 900 \square can obtain a maximum relative density (96.41%) and maximum flexural strength (190MPa) and optimal microwave dielectric properties (ε_r =6.8, $Q \times f$ =12500GHz, τ_f =-45ppm/ \square). The glass-ceramics can be sintered at a lower temperature and is suitable for a fully dense and high-strength dielectric substrate with a low dielectric constant. ## 5. REFERENCES [1] Y. Imanaka, Multilayers low temperature cofired ceramics (LTCC) technology, Springer, (2005) [2] B. Geller, B. Thaler, A. Fathy, M.J. Libertatore, H.D. Chen, G. Ayers, V. Pendrick, Y. Narayan, LTCC-M: an enabling technology for high performance multilayer RF systems, Microw. J. (1999) 42 - (7) 64-72. - [3] M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review, Int. Mater. Rev. 53 (2) (2008) 57–90. - [4] Zhou J, Towards rational design of low-temperature co-fired ceramic (LTCC) materials. J Adv Ceram. (1) (2012) 89-99. - [5] Naoya Mori, Yasutaka Sugimoto, Jun Harada, Yukio Higuchi, Dielectric properties of new glass-ceramics for LTCC applied to microwave or millimeter-wave frequencies, Journal of the European Ceramic Society. (26) (2006) 1925–1928 - [6] Xiangyu Du, Hua Su, Huaiwu Zhang, Zhenhua Zhou, Yulan Jing, Gongwen Gan. High-Q microwave dielectric properties of Li(Zn_{0.95}Co_{0.05})_{1.5}SiO₄ ceramics for LTCC applications, Ceramics International. (43) (2017) 7636–7640. - [7] K.M. Manu, P.S. Anjana, M.T. Sebastian, Low permittivity SrCuSi₄O₁₀–LMZBS glass composite for LTCC applications, Materials Letters. (65) (2011) 565–567. - [8] Sumesh George, Prabhakaran Sreekumari Anjana, Vasudevan Nair Deepu, Pezholil Mohanan, Mailadil Thomas SEbastian, Low-Temperature Sintering and Microwave Dielectric Properties of Li₂MgSiO₄ Ceramics, J. Am. Ceram. Soc. 92 (6) (2009) 1244–1249. - [9] Dong-Xiang Zhou,Fei Sun, Yun-Xiang Hu, Qiu Yun Fu, Gang Dou, Low-temperature sintering and microwave dielectric properties of Mg₃B₂O₆-LMZBS composites, J Mater Sci: Mater Electron. (23) (2012) 981–989. - [10] Gang Wang, HuaiWu Zhang, Cheng Liu, Hua Su, LiJun Jia, Jie Li, Xin Huang, GongWen Gan, Low-Temperature Sintering Li₃Mg_{1.8}Ca_{0.2}NbO₆ Microwave Dielectric Ceramics with LMZBS Glass, Journal of ELECTRONIC MATERIALS.Vol. 47 (8) (2018). - [11] Linshan Xie, Chaowei Zhong, Zixuan Fang, Yu Zhao, Bin Tang, Shuren Zhang. Microwave dielectric properties of $Li_2O-xMgO-ZnO-B_2O_3-SiO_2$ glass-ceramics (x = 30-50 wt. %), Journal of the Ceramic Society of Japan. 126 (3) (2018) 163-169. - [12] Sara Banijamali, Touradj Ebadzadeh. Glass-forming ability, sinter-crystallization behavior and microwave dielectric properties of MgO-B₂O₃-(Al₂O₃)-SiO₂ glass-ceramics, Journal of Non-Crystalline Solids. (441) (2016) 34–41. - [13] Yu Zhang, Jian Yao, Xiangyu Zhao, Liqun Ma. Ti substituted Ni-free Zr_{65-x}Ti_xCu_{17.5}Fe₁₀Al_{7.5} bulk metallic glasses with significantly enhanced glass-forming ability and mechanical properties. Journal of Alloys and Compounds.(2018) 713-718 - [14] F.A. Santos, J.R.J. Delben, A.A.S.T. Delben, L.H.C Andrade, S.M. Lima, Thermal stability and crystallization behavior of TiO₂ doped ZBLAN glasses, Journal of Non-Crystalline Solids. (357) (2011) 2907–2910. - [15] Cosmas M. Muiva, Stephen T. Sathiaraj, Julius M. Mwabora, Crystallisation kinetics, glass forming ability and thermal stability in glassy Se100 xInx chalcogenide alloys, Journal of Non-Crystalline Solids. (357) (2011) 3726–3733 - [16] Yonggui Zhao, Ping Zhang, Complex chemical bond theory, Raman spectra and microwave dielectric properties of low loss ceramics NdNbO₄–xAl₂O₃, J Mater Sci: Mater Electron. (27) (2016) 2511–2522 - [17] Hongyu Yang, Enzhu Li, Hongchen Yang, Hongcai He, Ren S. Zhang, Synthesis of Zn_{0.5}Ti_{0.5}NbO₄ microwave dielectric ceramics with Li₂O-B₂O₃-SiO₂ glass for LTCC application, Int J Appl Glass Sci. (00) (2017) 1-11. - [18] Enzhu Li, Hongcheng Yang, Hongyu Yang, Shuren Zhang, Effects of Li2O-B2O3-SiO2 glass on the low-temperature sintering of Zn0.15Nb0.3Ti0.55O2 ceramics, Ceramics International. (44) (2018) 8072-8080 - [19] Enzhu Li, Na Niu, Jing Wang, Shaoyang Yu, Shuxin Duan, Ying yuan, Effect of Li-B-Si glass on the low temperature sintering behaviors and microwave dielectric properties of the Li-modified ss-phase Li2O-Nb2O5-TiO2 ceramics, J Mater Sci: Mater Electron. (26) (2015) 3330-3335 [20] Jian Zhang, Ruzhong Zuo, Jie Song, Yudong Xu, Min Shi, Low-loss and low-temperature firable Li₂Mg₃SnO₆-Ba₃(VO₄)₂ microwave dielectric ceramics for LTCC applications, Ceramics International. (44) (2018) 2606–2610. - [21] Weiqiong Liu, Ruzhong Zuo, A novel Li₂TiO₃-Li₂CeO₃ ceramic composite with excellent microwave dielectric properties for low-temperature cofired ceramic applications, Journal of the European Ceramic Society (38) (2018) 119–123. - [22] Urban Dosler, Marjeta Macek Krzmanc, Danilo Suvorov. The synthesis and microwave dielectric properties of Mg₃B₂O₆ and Mg₂B₂O₅ ceramics, Journal of the European Ceramic Society. (30) (2010) 413–418. - [23] Gang Dou, Dongxiang Zhou, Shuping Gong, Mei Guo. Low temperature sintering and microwave dielectric properties of Li₂ZnSiO₄ ceramics with ZB glass, J Mater Sci: Mater Electron. (24) (2013) 1601–1607. - [24] Sang-Hyo Kweon, Mi-Ri Joung, Jin-Seong Kim,BoYun Kim, Sahn Nahm, Jong-Hoo Paik, Young Sik Kim, Tae Hyun Sung, Low Temperature Sintering and Microwave Dielectric Properties of B₂O₃-added LiAlSiO₄ Ceramics, J. Am. Ceram. Soc. 94 (7) (2011) 1995–1998. - [25] K.P. Surendran, M.T. Sebastian, M.V. Manjusha, Jacob Philip, A low loss dielectric substrate in ZnAl₂O₄–TiO₂ system for microelectronic applications, JOURNAL OF APPLIED PHYSICS. (98) (2005) 044101. [26] Hongyu Yang, Shuren Zhang, Hongcheng Yang, Xing Zhang, Enzhu Li, Structural Evolution and Microwave Dielectric Properties of xZn0.5Ti0.5NbO4 - (1-x) Zn0.15Nb0.3Ti0.55O2 Ceramics, Inorg. Chem. (57) (2018) 8264-8275 **Table 1.** Characteristic temperature of the DSC curve with heating rate of 10K/min and the glass-forming ability measurements. | LMZBS+xAl ₂ O ₃ | Tg | Tx | Tp | $\Delta T(Tp - Tg)$ | S | Ea | |---------------------------------------|-------|-------|-------|---------------------|-------|------------| | (wt. %) | (±1□) | (±1□) | (±1□) | (+1□) | (±1□) | (KJ/mol) | | 0 | 776 | 882 | 915 | 139 | 4.51 | 265.9±31.9 | | 1 | 776 | 886 | 932 | 156 | 6.51 | 220.8±9.8 | | 3 | 776 | 894 | 937 | 161 | 6.54 | 218.9±10.1 | | 5 | 776 | 900 | 947 | 171 | 7.51 | 182.1±19.4 | | 7 | 777 | 902 | 955 | 178 | 8.53 | 262.7±32.4 | | 10 | 778 | 907 | 966 | 188 | 9.95 | 205.0±41.3 | **Table 2.** The result of refined and calculated of LMZBSA glass-ceramics sintered at different conditions | _ | Different content of Al_2O_3 , $ST=900$ | | | | | 5wt.% | 5wt.% Al ₂ O ₃ ,different <i>ST</i> | | | |----------------------------|-------------------------------------------|--------|--------|--------|--------|--------|-----------------------------------------------------------|--------|--| | | 1wt.% | 3wt.% | 5wt.% | 7wt.% | 10wt.% | 880□ | 920□ | 940□ | | | W_{fl} (%) | 70.45 | 67.90 | 64.17 | 57.81 | 52.59 | 66.30 | 63.57 | 62.88 | | | W_{f2} (%) | 26.82 | 25.87 | 21.63 | 19.70 | 17.47 | 24.01 | 21.53 | 21.85 | | | $W_{f\beta}$ (%) | 0.84 | 2.66 | 8.55 | 16.91 | 22.77 | 5.07 | 8.74 | 9.08 | | | $W_{\!f\!4}\left(\% ight)$ | 1.79 | 3.58 | 5.66 | 7.07 | 8.60 | 4.62 | 6.15 | 6.19 | | | $\rho_I(g/cm^3)$ | 2.9150 | 2.9159 | 2.9151 | 2.9137 | 2.9139 | 2.9157 | 2.9146 | 2.9153 | | | $\rho_2(g/cm^3)$ | 3.4039 | 3.3948 | 3.4022 | 3.4359 | 3.4217 | 3.4136 | 3.4027 | 3.4235 | | | $\rho_3(g/cm^3)$ | 4.6319 | 4.6264 | 4.6263 | 4.6322 | 4.6376 | 4.6221 | 4.6246 | 4.6258 | | | $\rho_4(g/cm^3)$ | 2.3731 | 2.3863 | 2.3815 | 2.3813 | 2.3702 | 2.3875 | 2.3912 | 2.3713 | | | $\rho_{theo}(g/cm^3)$ | 3.0293 | 3.0331 | 3.0684 | 3.2016 | 3.2130 | 3.0469 | 3.0675 | 3.0750 | | | $ ho_{relative}(\%)$ | 93.86 | 95.03 | 96.41 | 95.73 | 94.70 | 95.72 | 94.27 | 95.21 | | | $R_{p}\left(\% ight)$ | 4.41 | 4.52 | 4.68 | 5.51 | 5.25 | 4.51 | 4.79 | 5.21 | | | R_{wp} (%) | 5.83 | 5.94 | 6.15 | 7.59 | 7.42 | 5.85 | 6.37 | 7.36 | | | χ^2 | 1.423 | 1.437 | 1.575 | 2.014 | 2.204 | 1.379 | 1.626 | 2.154 | | ST: sintering temperature; W_f : the mass fraction of the phase; ρ_1 , ρ_2 , ρ_3 , ρ_4 : the theoretical density of Mg₂B₂O₅ (PDF 86-0531), Li₂ZnSiO₄ (PDF 15-0056), ZnAl₂O₄ (PDF 74-1136) phase and LiAlSiO₄ (PDF 26-0839); R_p : reliability factor of weighted pattern; R_{wp} : reliability factor of weighted pattern; χ^2 : goodness of fit. **Table 3.** Variations of flexural strength (σ) and microwave dielectric properties in LMZBS+xAl₂O₃ (x=1~10wt. %) glass-ceramics | x (wt. %) | ST (□) | \mathcal{E}_r | $Q \times f(GHz)$ | σ(MPa) | $ au_f(ext{ppm}/\Box)$ | f(Hz) | |-----------|--------|-----------------|-------------------|--------|-------------------------|-------| | 1wt.% | 880□ | 6.77 | 9326 | 123 | -52.4 | 12.67 | | 3wt.% | 880□ | 6.67 | 10443 | 139 | -49.0 | 12.86 | | 5wt.% | 880□ | 6.79 | 10996 | 141 | -51.7 | 13.01 | | 7wt.% | 880□ | 6.81 | 9821 | 136 | -55.6 | 12.90 | | 10wt.% | 880□ | 6.84 | 9711 | 137 | -56.0 | 12.64 | | 1wt.% | 920□ | 6.52 | 9899 | 113 | -48.0 | 13.24 | | 3wt.% | 920□ | 6.53 | 10841 | 134 | -49.6 | 12.87 | | 5wt.% | 920□ | 6.72 | 11235 | 154 | -52.0 | 12.91 | | 7wt.% | 920□ | 6.48 | 11145 | 129 | -52.5 | 13.08 | | 10wt.% | 920□ | 6.79 | 10723 | 137 | -59.0 | 12.60 | | 1wt.% | 940□ | 6.42 | 7767 | 80 | -47.3 | 12.90 | | 3wt.% | 940□ | 6.43 | 7283 | 85 | -43.0 | 13.06 | | 5wt.% | 940□ | 6.50 | 8320 | 96 | -49.5 | 13.06 | | 7wt.% | 940□ | 6.57 | 8964 | 102 | -55.0 | 13.10 | | 10wt.% | 940□ | 6.65 | 8850 | 119 | -61.0 | 12.78 | Fig.1. DSC curve for 10wt. % of Al_2O_3 doped LMZBS glass with heating rate of 10K/min. **Fig.2.** (a) The crystallization peak position for different heating rates for the 5wt. % of Al₂O₃-LMZBS glass; (b) The Kissinger plots for all specimens Fig.3 (a) The XRD patterns of LMZBSA glass-ceramics with different amount of Al_2O_3 sintered at $900\Box$ for 2h in air; (b) The XRD patterns of LMZBSA glass-ceramics sintered at $880\sim940\Box$ with 5wt.% Al_2O_3 Fig.4 The refined XRD patterns of the LMZBSA glass-ceramics sintered at $900\Box$ for 2h;(a)x=1wt.%,(b)x=3 wt.%,(c)x=5 wt.%,(d)x=7 wt.%,(e)x=10 wt.% **Fig.5** Surface of the LMZBSA glass-ceramics: (a)900 \square , with 1wt.% Al₂O₃,(b) 900 \square , with 3wt.% Al₂O₃,(c) 900 \square , with 5wt.% Al₂O₃, (d) 900 \square , with 7wt.% Al₂O₃,(e) 900 \square , with 10wt.% Al $_2$ O $_3$, (f) 880 \square , with 5wt.% Al $_2$ O $_3$,(g) 920 \square , with 5wt.% Al $_2$ O $_3$,(h) 940 \square , with 5wt.% Al $_2$ O $_3$ **Fig.6** The bulk density, flexural strength and relative density values of LMZBAS glass-ceramics with different content of Al_2O_3 sintered at 880-940 Fig.7 Energy dispersion X-ray analysis (EDS) data for LMZBSA glass-ceramic **Fig.8** The calculated and measured ε_r values of LMZBAS glass-ceramic with $1{\sim}10$ wt. % Al₂O₃ sintered at 900 **Fig.9** Changes in measured τ_f values, the measured $Q \times f$ value, the calculate $Q \times f$ value and calculated τ_f values of LMZBAS glass-ceramic with $1 \sim 10$ wt. % Al_2O_3 sintered at $900 \square$